Toxicology: examples related to As, Al, Be, Ga, In compounds.
Nicole PROUST TRT Expert

-

Content

- 1- Introduction: biology, epitaxy hazards...
- 2- Toxicology and Speciation
- 3- As example
- 4- Al example
- 5- Be example
- 6- Ga example
- 7- In example
- 8- Conclusion

Semiconductor (GaAlAs, GaInAsP....) chemical vapor deposition

MOCVD

Gaseous sources

AsH₃ arsine

PH₃ phosphine

Metalorganics: In, Ga, Al...

Dopants

MOCVD: Metal Organic Chemical Vapor Deposition

MBE

Solid sources

As, Ga, Al, P

Dopants: Be

MBE: Molecular Beam **Epitaxy**

Chemical vapor deposition

MOCVD sources: PH₃ AsH₃ and metalorganics based on Ga, In, **AI...**

Reaction chamber

MAINTENANCE HAZARDS: sources, by products: gases and particles (dust)

12 FEB 08 NProust

Cell membrane arrangement and structure

Cell membrane (semipermeable)

Toxicant interaction:

- on the surface of the cell - within the cell- in the extracellular (interstitial) space

Toxicant transport:

- 1- Passive or spontaneous: without energy, based on simple diffusion
- **2- Facilitated diffusion**: assistance of specific carrier proteins
- 3- Active transport with energy, based on the consumption of ATP

Facilitated transport

Active transport

Exocytosis Endocytosis

DETOXICATION

EXCRETION

Speciation is a very important parameter

Each compound of a same family has specific properties

There are differences in term of:

- chemical, physical... properties
- solubility (insoluble, lipid soluble, water soluble)
- reactivity with water, oxygen...
- Toxicity will be also different!

12 FEB 08 NProust

DL₅₀ arsenic compounds

Arsenic compounds	DL ₅₀ (mg/kg)	Animal /
		Administration mode
Arsenite : arsenic trioxide	34,5	mice / oral
Arsenite : sodium arsenite	4,5	rat / intraperitoneal
Arsenate : sodium arsenate	14 - 18	rat / intraperitoneal
MMA: monomethylarsonic acid	1 800	mice / oral
DMA: dimethylarsinic acid	1 200	mice / oral
Arsenobetaine	10 000	mice / oral
Trimethylarsine oxide	10 600	mice / oral
Trimethylarsine	8 000	mice / subcutaneous
Trisdimethylaminoarsine	15	mice / subcutaneous

3 HYDROGEN CAN BE SUBSTITUTED AND REPLACED BY ORGANIC GROUPS TO DECREASE TOXICITY

Decreasing toxicity (not always true!)

$$H - As$$
 $>$ $R - As$ $>$ R_1 $>$ R_2

Arsine $CL_{50} = 5$ to 10 ppm

$$CH_3 \\ | H \\ CH_3 - C - As \\ | H \\ CH_3$$

Tertiary butylarsine $CL_{50} = 70 \text{ ppm}$

TBA

Trimethylarsine $DL_{50} = 8000 \text{ ppm (mg/kg)}$ $CL_{50} = 20~000~ppm$

$$CH_{3}$$

$$N - CH_{3}$$

$$N - CH_{3}$$

$$N - CH_{3}$$

$$CH_{3}$$

$$N - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$Trisdimethylaminoarsine DL50 = 15 ppm (mg/kg)$$

DMAAs

TMA

12 FEB 08 NProust

As metabolisation and excretion

Arsine: the most toxic As compound causing hemolysis (destruction of red blood cells) + long term toxicity mineral As

¢

Ingestion of one Arsenic orale dose

1 -INORGANIC As: NaAsO₂

46% dose excreted in 4 days

1/2 excretion (23%) in 28h (1/2 biological lifetime)

excretion of 3 métabolites : Asi + MMA + DMA

on 96 h, are excreted: 25% Asi + 21% MMA + 54% DMA

2 - DIMETHYLE As: (CH₃)₂AsO₂Na

75% dose excreted in 4 days

1/2 excretion en 11h (1/2 biological lifetime)

excretion: only DMA

3- TRIMETHYLED commonly excreted without any

transformation (arsenocholine, arsenobetaine, ...)

78 % dose in 1,5 day

Arsine: the most toxic As compound causing hemolysis (destruction of red blood cells) + long term toxicity mineral As

Arsenates: As(+5) modification of P metabolism (P replaced by As in ATP)

Arsenites: As(+3) Inactivation of vital enzymes. Proteins with S-H groups.

IARC CLASSIFICATION

Arsenic and arsenic compounds

Gallium arsenide

Group 1: carcinogen for human

-

ACUTE, LONG TERM TOXICITY

TARGET
ORGANS

Skin, Kidney, Liver

Blood

Respiratory system

Gastrointestinal tract

Nervous system

Cardiovascular system

12 FEB 08 NProust

- → Many industrial applications for Al and it compounds: urban construction, transportation (cars, planes, trains, satellites...), electrical and mechanical industries, medicine, implants, cosmetics, water treatment (floculent), food industry ...
- → EXPOSURE: Foodstuffs and water are said to be the major sources of exposure (EC regulation: max Al in water: 200 µg/L)
- → Al in black tea, 1 cup ~0.5 mg of Al (5µg Al/cm³). Digestive absorption of Al from a black tea cup enhanced by lemon addition (formation of soluble Al citrate complexes) or decreased by milk addition (formation of aluminium-phosphato species).
- → Others plants with high Al content: basil, thyme.
- → Cooking: avoid *AI foils to cook fish "en papillotte"* with lemon.
- → Al in drugs (antiacid), in vaccines.
- Al in antiperspirants (Al chloride), especially for women, are suspected to contribute to breast cancer (EC regulation)

- → Inhalation can result in a direct transfer of the Al particulates to brain tissue via the olfactory system.
- → Long term exposure to Al fumes and fine dusts can lead to accumulation.
- → The most important target organs are lung (fibrosis), bones (osteomalacia) and brain (neurotoxicity).
- → IARC Classification: "Aluminium production industry" as a carcinogen process (Group 1) to Humans (risk of lung and bladder cancer).
- → EC regulation: Aluminium, Aluminium chloride, and Aluminium phosphide not classified as carcinogenic compounds.
- → "Link" between Aluminium and Alzheimer disease ???

- ╬
- → Beryllium has important and specific uses in: <u>nuclear</u>, <u>aerospace</u> and <u>electronics industries</u>.
- → Be and its compounds are very toxic to mammalian cells. Interference with the immune system, after inhalation (dust, particules) to lung disease and possibly cancer.
- **→** IARC classification:

Be and its compounds are placed in the group 1 (Carcinogen for Humans)

→ EC legislation:

Be and its compounds (except the Si, Al, Be oxide) are in the category 2 (possibly carcinogen by inhalation).

→ Be toxicity not well understood and rather speculative.

2 FEB 08 NPro

TARGET ORGANS

Damage or perturbation on a lot of organs or systems

Immune system: GaAs, Ga, As or both.

Reproductive system: Ga, In (different effects)

Hematopoietic system: Ga and As from GaAs and InAs particles (effect on heme biosynthetic pathway, Cytochrome P 450, some enzymes inhibited)

Kidney: Major target organ for metals such as In and Ga.

Alterations are different for Ga, In, GaAs, InAs)

Liver: In (inhibition of enzymatic activity)

Bones: accumulation of Ga

-ф

Toxicology

- → Many information on Arsenic compounds and their toxicity.
- → Data on Aluminium compounds because of Alzheimer disease.
- → Data on Beryllium.
- → Few data on Gallium and Indium.
- → Nothing on the metalorganics used in MOCVD.

Safety

- → Maintenance is the most critical operation, operators to be adequately protected, gases and particulates measurements, biometrology mandatory. Toxic waste to be handle.
- → Take care to burns with metaloragnics, dermal entry for the chemical into the body.
- → Take care to fire → particules of oxides → respiratory entry.