Laser Induced Fluorescence Spectroscopy and Molecular Imaging as Tools for Tumor Detection *in vivo*

B. Ebert

Physikalisch-Techn. Bundesanstalt, Section 8.31, PTB, Berlin, Germany

Outline:

- Spectroscopic identification of malignant regions in the gastrointestinal tract
- Receptor-targeted fluorescence imaging of animals
- Demarcation of lymph nodes by fluorescence imaging
- Spatial resolution in fluorescence imaging
- Fluorescence reference material

Fluorescence imaging of lymph nodes Experimental setup

Heme biosynthesis

Fluorescence spectroscopy of tumors endoscopic view

Fluorescence spectroscopy of malignant tissue

Fluorescence spectroscopy of lymph nodes Comparison with histology (cumulative frequency)

Cancer Research, 2001, 61, 991-999

Experimental setup: Gated fluorescence imaging

Gate:200 ps, 20 MHz

18th June 2007

Receptor targeted NIR- imaging of mouse xenografts with fluorescent ligands

Optical molecular imaging of lymph nodes using a targeted vascular contrast agent

strong fluorescence in the liver consistent with the hepatobiliary elimination pathway

Bayer Schering Pharma

18th June 2007

J Biomed Opt. 2005, 10(4):41205

Optical molecular imaging of lymph nodes using a targeted vascular contrast agent

Experimental setup: Gated fluorescence imaging

SHG THG Nd:YAG. 100 Hz OPO Delay **Excitation fiber** generator **HV pulse** generator ICCD-Camera Controller **—**Filter

Gate: 10 ns, 100 Hz

Gate:200 ps, 20 MHz

Depth resolved fluorescence imaging

Fluorescent rod at different depth in a scattering solution $\mu'_s = 14 \text{ cm}^{-1}$

Depth resolved fluorescence imaging Fluorescent rod at different depth in a scattering solution $\mu'_{s} = 14$ cm-1

18th June 2007

Fluorescence reference material and application

Fluorescence excitation spectra

Fluorescence intensity in dependence on concentration of cyanine dye molecules

Workshop: High Brightness Laser Sources

Scattering phantom with NIR96007, 2% on glass spheres

Monitoring of inflammation of ankle joints using cyanine dyes as contrast agents

Regions of interest

18th June 2007

Increase of fluorescence intensity in the right ankle joint after i.v. application of a cyanine dye

Conclusion

- **Small malignant regions (dysplasias) in the gastrointestinal** tract can be identified.
- ★ Light sources with high pulse energy and low repetition rates are preferable to suppress ambient light
- ★ Succesful targeting of endothelial surface-expressed molecules - leukocyte homing
- \mathbf{X} **Determination of depth of inclusions by time resolved** fluorescence imaging
- \bigstar Fluorescent phantoms are needed, however, to match optical properties of biological tissue is difficult