

Need of improved sources for medical fluorescence diagnostics

Stefan Andersson-Engels

Lund University

Identification or staging of visible lesion

Stefan Andersson-Engels Lund University

Point monitoring: Whole spectrum in one small tissue site

Delineating lesion and visualization of tumour border

Multicolour or Hyperspectral imaging

Imaging:

Larger area often implies less spectral information

BRIG

EU

J. Johansson, Dissertation thesis, LTH (1993). af Klinteberg *et al.* (1999)

stefan.andersson-engels@fysik.lth.se

C. Eker *et al.* Gut (1999)
C. Eker *et al.* Lasers Surg Med (2001)
C. af Klinteberg, *et al.* Rev Sci Instrum. (2005)
S. Pålsson et al. JEPTO (2006)

Clinical measurements

Stefan Andersson-Engels Lund University

C.Eker, et al. Gut 44, 511-518 (1999).

Diode laser fluorosensor

Beam splitter

Diode laser 396 nm

- Optical fibre
- Spectrometer
- Shutter

Lap top controlled

Also constructed LED based fluorosensors **BUT** - Need of more power and pulsing!

Multicolour fluorescence imaging

- S. Andersson-Engels et al Appl Opt (1993)
- K. Svanberg et al Acta Radiologica (1998)
- S. Andersson-Engels et al. Lasers Surg Med (2000)
- S. Andersson-Engels et al. Biomedical Optics (in press)

Ambient light shielding

Stefan Andersson-Engels Lund University

M. Ilias et al. Proc SPIE 6631 (in press)

Suppression of ambient light

Skin measurements

Brain measurement

The need

- wavelength,
- output power,
- pulse duration, repetition rate and duty cycle,
- beam quality,
- compactness.
- Semiconductor laser systems fulfilling the above-mentioned requirements are being investigated

- Advantages with semiconductor lasers
 - high wall-plug efficiency,
 - high output power.
- Challenges
 - Pulsing!
 - how much output power is needed?
 - beam quality and spectral shape?

Target specifications – the challenge

	Fluorescence spectroscopy	Fluorescence imaging
Average power @ 405 nm (to allow real time recording)	> 1 mW	> 10 mW
Duty cycle (to allow suppression of ambient background light)	< 10 ⁻⁴	< 10 ⁻⁴
Rep. Rate (limited by repetition rates of the image intensifier of available cameras)	< 1 kHz	< 5 kHz
Pulse duration (calculated as the longest pulse possible with the duty cycle given and highest rep. rate.)	≈ 100 ns	≈ 20 ns
Peak power	≈ 10 W	≈ 100 W

2W tapered laser with external feedback at 800 nm

Stefan Andersson-Engels Lund University

M. Chi, O. B. Jensen, J. Holm, C. Pedersen, P. E. Andersen, G. Erbert, B. Sumpf, and P. M. BRIGHTER • EU Petersen, Opt. Express **13**, 10589 (2005)

stefan.andersson-engels@fysik.lth.se

RISØ Bow-tie – in the lab

