

WWW.BRIGHTER.EU WORKSHOP CLEO Europe 18th June 2007

High brightness laser diode sources

General Introduction by Michel KRAKOWSKI

Alcatel-Thales III-V Lab

Introduction

CHALLENGE:

Strengthen the position of Europe in High Brightness Laser Diode technology and take a large share of the fast growing € 1 billion market foreseen by the end of the decade.

OBJECTIVE:

- Push the limits of current technology (brightness, power and efficiency) medium term
- Develop advanced technologies (high beam coherence, even higher brightness) long term
- Demonstrate applications in the fields of health-care, telecom, display, security and environment.

APPROACH:

- Streamline the technical developments through a coherent exploitation of synergies, leading to preindustrial demonstrators.
- Accelerate the development and uptake of advanced technologies through partnership between leading Industries, Research Centres and Universities.
- Establish an expert workforce and stimulate new markets by engaging future engineers, industrial players and end-users through training, dissemination and popularisation activities.

WWW.BRIGHTER.EU			
3 years		11 countries involved	
8 industrial partners	7 Universities	8 Research centres	
24 pre-industrial application demonstrators			

WP DIAGRAMM

BRIGHTER PARTICIPANTS

No	Country	WWW.BRIGHTER.EU Participant	
<u>1</u>	France	Alcatel Thales III-V Lab	
<u>2</u>	Germany	Biolitec	
<u>3</u>	Sweden	Lund University	
<u>4</u>	Greece	Institute of communication and computer Systems	
<u>5</u>	Denmark	RISOE National Laboratory	
<u>6</u> <u>7</u>	Germany	OSRAM Opto Semiconductors	
<u>7</u>	United Kingdom	University of Cambridge	
8	France	Keopsys	
<u>9</u>	France	Alcatel CIT	
<u>10</u>	Canada	Institut National d'Optique	
<u>11</u>	Germany	University of Würzbug	
<u>12</u>	Switzerland	Fisba Optik AG	
<u>13</u>	Switzerland	Rainbow Photonics AG	
14	France	THALES	
<u>15</u>	Spain	Universidad Politecnica de Madrid	
<u>16</u>	Germany	Forschungsverbund Berlin e.V FBH	
<u>17</u>	Germany	Fraunhofer-Gellschaft	
<u>18</u>	Poland	Instytut Wysokich Cisnien PAN (UNIPRESS)	
<u>19</u>	Germany	Universitat Kassel	
<u>20</u>	France	Centre National de la Recherche Scientifique	
<u>21</u>	Germany	Forschungsverbund Berlin e.V MBI	
<u>22</u>	Ireland	Tyndall National Institute	
<u>23</u>	United Kingdom	University of Nottingham	

Laser fabrication & Modelling

► Progress beyond BRIGHT.EU

- QD laser material for 920 nm uncooled pump modules (dλ/dT < 0.1 nm/K, P: 2 W → 4 W, η_P: 50% → 60%)
- 635 nm red laser (P: 3 W \rightarrow 5 W, reliability: 1000 h \rightarrow 2000 h)
- 650 nm red laser (P: 4 W \rightarrow 7 W, reliability: 1000 h \rightarrow 2000 h, VFF: 40° \rightarrow 32°)
- Al-free 975 nm Esakijunction laser (P: 20 W → 80 W)
- gain-guided tapered lasers (M² < 2,
 P: 5 W → 10 W,
 VFF: 70° → 40°)

New BRIGHTER activities

- Zero-α QD laser material with tunnel injection design (920/1060 nm) for reduced filamentation (P > 4 W, T₀ > 300 K)
- 1060 nm MOPA laser with integrated overgrown DFB/DBR grating (P > 5 W (single chip), VFF < 22°, Δλ < 0.1 nm)</p>
- High wall-plug efficiency laser structures $(\eta_P = 70\%)$
- 670 nm tapered laser (P > 1 W, M^2 < 2)
- Large spot size QD/QW SCOWL (1060 nm, P > 3 W (single chip))
- 975/1060 nm beam steering lasers
- Phase coupled tapered laser mini-arrays
- Injection modulated (> 100 MHz) multisection lasers (650 nm, 1060 nm)
- Simulation and design of QD lasers
- Simulation/design of external cavity lasers (FWM, self-organizing, Talbot effect cavities)
- Simulation of modulation behavior and modal discrimination in astable cavity lasers

Telecom & General applications

Progress beyond BRIGHT.EU

- 975 nm pump sources for EDFA:
 Increase of power from 5 W →
 12 W (50 µm fibre)
- EDFA for WDM and CATV: Increase of Psat from +27 dBm → +33 dBm
- 915 nm pump source for Yb-Laser:
 Pump power increased from 10 W
 → 30 W (200 µm fibre)
- From laboratory breadboards in BRIGHT.EU → modules in BRIGHTER

New BRIGHTER activities

- Raman laser, output power >3 W (using Yb source)
- Raman amplifier, 18 dB gain, P_{sat} >1 W
- System validation of EDFA and Raman amplifiers
- Diffuse source optical wireless: Highspeed modulation (max. 1 Gbit/s) of high-brightness laser at 1060 nm
- Directed line of sight optical wireless:
 Beam steerable, high-speed laser at
 5 W, M²<2, 1060 nm
- Pollutant detection: pulsed Yb fibre laser at 1070 nm, ns-pulses at 100 kHz
- Laser illuminator for security imaging, based on Esaki junction lasers, 80 W peak power from single emitter

External cavity

for SHG

External cavities & Medical applications

Progress beyond BRIGHT.EU

- fluorescence diagnostics imaging for use with photosensitisers
 - increased SNR, resolution, and image size
 - SHG into 405 nm from <u>pulsed</u>, tapered 810 nm diodes (M²<1.2, 5 kHz, P>1W)
- double brightness of multi-port, red lasers for I-PDT
 - thinner fibres (200-300 microns), higher power P>7 W

Pump laser (810 nm, cw) Electrical feedback loop Q-switch (EOM) switching polarisation Electrodes for using r₃₃ E-O component AC applied to modulate feedback the signal

New BRIGHTER activities

- autofluorescence diagnostics imaging of endogenous chromophores, e.g. cancerous lesions
 - SHG into 340 nm (M²<1.2, pulsed - 5 kHz, P>0.2W)
- extend red PDT laser systems with detection units measuring back-scattered red light during treatment
 - implementation of on-line monitoring of parameters relevant for therapy progress
- application of multi-variate image analysis methods on multi-spectral fluorescence images
 - enables/improves diagnostics

External cavities & Laser displays

EXTERNAL CAVITIES

- **Progress beyond BRIGHT.EU**
 - wavelength multiplexing of stacks of tapered mini-bars
 - >30W in 50 micron fibre

New BRIGHTER activities

- external diode setup for investigating FWM-induced carrier density gratings with electroluminescence microscopy
 - essential for modelling and fabrication
- improved brightness of bars by coherent combining of beams in external Talbot cavities

LASER DISPLAYS

- **NEW ACTIVITY**
- Know-How from BRIGHT.EU
 - IR and red tapered laser (WP 1)
 - Frequency doubling (WP 3)
 - Optical beam shaping and low-stress mounting (WP 4)
 - Reliability (WP 5)

BRIGHTER activities

- Direct MHz modulation of IR and red tapered lasers
- Integrated wavelength stabilization of tapered lasers
- Segmented contacts for injection and taper regions and structured submounts
- Frequency doubling with MHz modulation

tapered laser for direct

Workshop purposes

- •Publicise the activities, technologies, expertyise and capacity of both the project and the individual partners.
- •Learn about the laser needs of different external application fields and organisations active in them.
- •Establish links and interaction with these fields and external players.

Workshop at the World of Photonics Congress and Laser2007 fair 18th June 2007 - Munich Program

```
Workshop Introduction and Welcome (10:30 - 10:35)
            Introduction to W W W .BRIGHTER.EU
             Michel Krakowski - Alcatel-Thales III-V Lab
Ŭ
     High-Brightness Laser Technology (10:35 - 11:45)
     10:35
            External cavities for controlling spatial & spectral properties of SC lasers
             Jean-Pierre Huignard - Thales Research and Technology
0
     10:45
            Reliable high-power red-emitting laser diodes
             Bernd Sumpf - Ferdinand Braun Institute
     10:55
             Wavelength stabilised high-power quantum dot lasers
            Hans Peter Reithmaier - University of Kassel
     11:05
            Quantum dot lasers & new device concepts for high-brightness applications
(1)
            Dieter Bim berg / Nikolai Ledentsov - Technical University of Berlin
     11:25
            High-power laser for surgical applications (cutting and ablation)
S
            Ronald Sroka - LFL Munich
     Break
     Packaging, Micro-Optics and Reliability (12:05 - 12:45)
            Micro-optics and fibre coupling of high-brightness laser bars
     12:05
             Martin Forrer - FISBA Optik
     12:15
            How to measure packaging-induced strain in high-brightness diode lasers?
Ŏ
            Jens Tomm - Max Born Institute
     12:25
            High-power laser modules and their applications
0
             Jörg Neukum - DILAS
      Break
     Frequency-Doubled Lasers (14:00 - 14:50)
     14:00
            Second harmonic generation of external cavity tapered diode lasers
             Ole Bjarlin Jensen - Risoe National Laboratory
     14:10
            High-power Semiconductor VECSELs
S
             Anne Tropper - University of Southampton
     14:30
            ps applications of diode lasers
Ū
            Ranier Erdmann - Picoquant
      Break
Brightn
     Medical, Telecom and Display Applications (15:10 - 17:00)
            Fluorescence diagnostics in medicine - there is a need for improved light sources
             Stefan Andersson-Engels - Lund University
     15:20
             Diode lasers for photodynamic therapy
            Tilm ann Trebst - Biolitec
            Laser-induced fluorescence spectroscopy and molecular imaging as tools for tumour detection in vivo
     15:30
             Bernd Ebert - Physikalisch-Technische Bundesanstalt
            Shrinking optically-pumped frequency-doubled green semiconductor lasers to fit into tiny laser projectors
     15:50
             Michael Kühnelt - OSRAM Opto Semiconductors
     16:10
            Laser display markets, technologies and requirements
igh
             Holger Mönch - Philips Research Laboratories
     16:30
            Fibre amplifiers and pumping technologies
             Mark Le Flohic - Keopsys
            Making use of brighter lasers - Optical amplifiers in current and future W D M systems
     16:40
                                                                                          WWW • ★ ★
            Jörg Peter Ebers - Ericsson
                                                                                          BRIGHTER
                                                                                                         • EU
     Note: The above program is subject to change at the discretion of the workshop organisers.
```